Cervantes

Hoy es el día más hermoso de nuestra vida, querido Sancho; los obstáculos más grandes, nuestras propias indecisiones; nuestro enemigo más fuerte, el miedo al poderoso y a nosotros mismos; la cosa más fácil, equivocarnos; la más destructiva, la mentira y el egoísmo; la peor derrota, el desaliento; los defectos más peligrosos, la soberbia y el rencor; las sensaciones más gratas, la buena conciencia, el esfuerzo para ser mejores sin ser perfectos, y sobretodo, la disposición para hacer el bien y combatir la injusticia dondequiera que esté.

MIGUEL DE CERVANTES
Don Quijote de la Mancha.

21 de octubre de 2013

Surface plasmons reveal grain boundaries in graphene

Oct 21, 2013
Artist's impression of how plasmons are used to detect grain boundaries in graphene
Surface plasmons hit boundary bullseye

Researchers in the US, Germany, Singapore and Spain have developed a new technique to obtain images of grain-boundary defects in graphene by analysing the behaviour of surface plasmons. Their study reveals that the defects act as electronic barriers and are responsible for the low electron mobility seen in some samples of graphene. The team also says that these barriers could find use as tuneable "plasmon reflectors" and "phase retarders" in plasmonic circuits of the future.

Graphene is a single atomic layer of carbon atoms that are arranged in a honeycomb lattice. It shows great promise for making electronic devices of the future thanks to its unique electronic and mechanical properties – which include extremely high electrical conductivity and exceptional strength.
A patchwork quilt

Defect-free graphene has the best mechanical and electronic properties but techniques for creating large, pristine graphene samples are limited by the emergence of grain-boundary defects. Much like the seams in a patchwork quilt, these defects form the boundaries between areas of perfect graphene. They are also notoriously difficult to characterize using conventional techniques such as transmission electron microscopy or optical microscopy.

The new nano-imaging technique developed by Dimitri Basov of the University of California at San Diego and colleagues was used to study graphene created by chemical vapour deposition (CVD) – a standard technique for making the material that suffers from grain-boundary problems.
Rippling across the surface

Surface plasmons are coherent wave-like oscillations of electrons that ripple across the surface of graphene and some other materials. In Basov's experiment the plasmons are created by a nanoscale antenna – the metallic probe of an atomic force microscope – that is placed near the graphene surface and excited by infrared light (see figure). The plasmon waves are reflected and scattered by the graphene grain boundaries, creating interference patterns.

"By recording and analysing these interference patterns, we can map grain boundaries for large-area CVD films and probe the electronic and optical properties of individual grain boundaries at the same time," explains team member Zhe Fei.
Charged line defects

The analyses show that grain boundaries in CVD-grown graphene are "charged line defects" that act as obstacles to both charge transport and plasmon propagation, he says. This discovery goes some way towards explaining why electrons travel slower in such graphene than in defect-free samples. On the other hand, grain boundaries might be exploited as plasmon reflectors and phase retarders – which are essential components for future graphene-based plasmonic circuits. Indeed, the team says that it is already looking at making such circuits by creating charge barriers in graphene that are similar in structure to grain boundaries.

Plasmon reflectors are used to change the path of plasmon waves in a material, in analogy to a mirror (or a beam splitter) in optics, explains Fei. Plasmon phase retarders are used to add phase delay to the plasmon waves, in analogy to an optical waveplate. "Our experiments indicate that the graphene electronic barriers themselves are plasmon reflectors and phase retarders and so can be used to reflect plasmon waves and also to add phase delay to the reflected waves."
Shrinking optics

Controlling plasmons in this way could be particularly useful for shrinking the size of optical devices. This is because light can interact with surface plasmons to create waves called surface plasmon polaritons (SPPs), which have much shorter wavelengths than the original light. As a result, devices controlling SPPs can be much smaller than their optical counterparts.

The nano-imaging technique might also be used to analyse a variety of other materials in which plasmon waves exist, he adds. Such materials include metals, superconductors and topological insulators. It might even be extended to structures that support surface phonons waves (vibrations of the crystal lattice), such as dielectric materials, for example.

"The electronic properties of a grain boundary are largely related to its atomic structure so we will now be correlating our technique with an atomic-scale method such as scanning tunnelling microscopy, to study grain boundaries," says Fei. "Such studies will help us better understand the exact relationship between structure and properties of these defects."

The research is reported in Nature Nanotechnology 10.1038/nnano.2013.197.

Alerta Venezuela

No dejen de ver este conmovedor video

LatinoAmérica Calle 13

The American Dream

Facebook, Israel y la CIA











La Revolucion de la Clase Media


Descontento en el corazon del capitalismo: el Reino Unido

Descontento en el corazon del capitalismo: el Reino Unido

La Ola se extiende por todo el mundo arabe : Bahrein

La Caida de un Mercenario

La Revolucion no sera transmitida (I)

(II) La revolucion so sera transmitida

(III) La Revolucion no sera transmitida

(IV) La Revolucion no sera transmitida

(V) La Revolucion no sera transmitida

(VI) La Revolucion no sera transmitida

(VII) La revolucion no sera transmitida

(VIII) La Revolucion no sera transmitida

Narcotrafico SA

La otra cara del capitalismo...

Manuel Rosales mantenia a la oposicion con el presupuesto de la Gobernacion del Zulia...

El petroleo como arma segun Soros

Lastima que se agacho...

El terrorismo del imperio

Promocional DMG

Uribe y DMG