The materials, called perovskites, are particularly good at absorbing visible light, but had never been thoroughly studied in their purest form: as perfect single crystals.
Using a new technique, researchers grew large, pure perovskite crystals and studied how electrons move through the material as light is converted to electricity.
Led by Professor Ted Sargent of The Edward S. Rogers Sr. Department of Electrical & Computer Engineering at the University of Toronto and Professor Osman Bakr of the King Abdullah University of Science and Technology (KAUST), the team used a combination of laser-based techniques to measure selected properties of the perovskite crystals. By tracking down the rapid motion of electrons in the material, they have been able to determine the diffusion length—how far electrons can travel without getting trapped by imperfections in the material—as well as mobility—how fast the electrons can move through the material. Their work was published this week in the journal Science.
"Our work identifies the bar for the ultimate solar energy-harvesting potential of perovskites," says Riccardo Comin, a post-doctoral fellow with the Sargent Group. "With these materials it's been a race to try to get record efficiencies, and our results indicate that progress is slated to continue without slowing down.."
"In their efficiency, perovskites are closely approaching conventional materials that have already been commercialized," says Valerio Adinolfi, a PhD candidate in the Sargent Group and co-first author on the paper. "They have the potential to offer further progress on reducing the cost of solar electricity in light of their convenient manufacturability from a liquid chemical precursor."
Parallel work in the Sargent Group focuses on improving nano-engineered solar-absorbing particles called colloidal quantum dots. "Perovskites are great visible-light harvesters, and quantum dots are great for infrared," says Professor Sargent. "The materials are highly complementary in solar energy harvesting in view of the sun's broad visible and infrared power spectrum."
"In future, we will explore the opportunities for stacking together complementary absorbent materials," says Dr. Comin. "There are very promising prospects for combining perovskite work and quantum dot work for further boosting the efficiency."
More information: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science 30 January 2015: Vol. 347 no. 6221 pp. 519-522. DOI: 10.1126/science.aaa2725