January 6, 2016
Gold ring
The researchers from the University of Twente have demonstrated electron interference in a gold ring with a diameter of only 500 nanometers (a nanometer is a million times smaller than a millimeter). One side of the ring was connected to a miniature wire through which an electrical current can be driven. On the other side, the ring was connected to a wire with a voltmeter attached to it. When a current was applied, and a varying magnetic field was sent through the ring, the researchers detected electron interference at the other side of the ring, even though no net current flowed through the ring.
This shows that the electron waves can "leak" into the ring, and change the electrical properties elsewhere in the circuit, even when classically one does not expect anything to happen. Although the gold ring is diffusive (meaning that the electron mean free path is much smaller than the ring), the effect was surprisingly pronounced.
Quantum information processing
The result is a direct consequence of the fact that the quantum equations of motion are nonlocal. That nature is nonlocal is also well-known from another kind of nonlocality: the counterintuitive ability of objects to instantaneously know about each other's state, even when separated by large distances. Einstein referred to it as: "spooky action at a distance". The Twente results help to further understand the first type of nonlocality, referred to as dynamical nonlocality, which plays a key role in all quantum interference experiments. It is very well known that quantum interference is affected by decoherence (where the physical environment causes loss of phase memory), and by performing a "which-path-measurement" (removing the dynamical nonlocality and hence destroying the interference pattern). Now the researchers from the University of Twente have discovered a new way to affect the dynamical noncality. Namely the geometry of the circuit. Understanding this fundamental effect is important for future quantum information processing. For example when creating a quantum computer.