This view of a portion of the Eridania region of
Mars shows blocks of deep-basin deposits that have been surrounded and
partially buried by younger volcanic deposits. The image was taken by
the Context Camera on NASA's Mars Reconnaissance Orbiter and covers an
area about 12 miles wide.
Credits: NASA/JPL-Caltech/MSSS
A recent international report examines observations by NASA's Mars Reconnaissance Orbiter (MRO) of massive deposits in a basin on southern Mars. The authors interpret the data as evidence that these deposits were formed by heated water from a volcanically active part of the planet's crust entering the bottom of a large sea long ago.
"Even if we never find evidence that there's been life on Mars, this site can tell us about the type of environment where life may have begun on Earth," said Paul Niles of NASA's Johnson Space Center, Houston. "Volcanic activity combined with standing water provided conditions that were likely similar to conditions that existed on Earth at about the same time -- when early life was evolving here."
The Eridania basin of southern Mars is believed to
have held a sea about 3.7 billion years ago, with seafloor deposits
likely resulting from underwater hydrothermal activity. This graphic
shows estimated depths of water in that ancient sea. The map covers an
area about 530 miles wide.
Credits: NASA
Observations by MRO's Compact Reconnaissance Spectrometer for Mars (CRISM) provided the data for identifying minerals in massive deposits within Mars' Eridania basin, which lies in a region with some of the Red Planet's most ancient exposed crust.
"This site gives us a compelling story for a deep, long-lived sea and a deep-sea hydrothermal environment," Niles said. "It is evocative of the deep-sea hydrothermal environments on Earth, similar to environments where life might be found on other worlds -- life that doesn't need a nice atmosphere or temperate surface, but just rocks, heat and water."
This diagram illustrates an interpretation for the
origin of some deposits in the Eridania basin of southern Mars as
resulting from seafloor hydrothermal activity more than 3 billion years
ago.
Credits: NASA
The researchers estimate the ancient Eridania sea held about 50,000 cubic miles (210,000 cubic kilometers) of water. That is as much as all other lakes and seas on ancient Mars combined and about nine times more than the combined volume of all of North America's Great Lakes. The mix of minerals identified from the spectrometer data, including serpentine, talc and carbonate, and the shape and texture of the thick bedrock layers, led to identifying possible seafloor hydrothermal deposits. The area has lava flows that post-date the disappearance of the sea. The researchers cite these as evidence that this is an area of Mars' crust with a volcanic susceptibility that also could have produced effects earlier, when the sea was present.
The new work adds to the diversity of types of wet environments for which evidence exists on Mars, including rivers, lakes, deltas, seas, hot springs, groundwater, and volcanic eruptions beneath ice.
"Ancient, deep-water hydrothermal deposits in Eridania basin represent a new category of astrobiological target on Mars," the report states. It also says, “Eridania seafloor deposits are not only of interest for Mars exploration, they represent a window into early Earth." That is because the earliest evidence of life on Earth comes from seafloor deposits of similar origin and age, but the geological record of those early-Earth environments is poorly preserved.
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, built and operates CRISM, one of six instruments with which MRO has been examining Mars since 2006. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the project for the NASA Science Mission Directorate in Washington. Lockheed Martin Space Systems of Denver built the orbiter and supports its operations. For more about MRO, visit:
Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6278
guy.webster@jpl.nasa.gov
Jenny Knotts
Johnson Space Center, Houston
281-483-5111
Norma.j.knotts@nasa.gov
Laurie Cantillo / Dwayne Brown
NASA Headquarters, Washington
202-358-1077 / 202-358-1726
laura.l.cantillo@nasa.gov / dwayne.c.brown@nasa.gov
2017-261
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6278
guy.webster@jpl.nasa.gov
Jenny Knotts
Johnson Space Center, Houston
281-483-5111
Norma.j.knotts@nasa.gov
Laurie Cantillo / Dwayne Brown
NASA Headquarters, Washington
202-358-1077 / 202-358-1726
laura.l.cantillo@nasa.gov / dwayne.c.brown@nasa.gov
2017-261
Last Updated: Oct. 6, 2017
Editor: Tony Greicius