Cervantes

Hoy es el día más hermoso de nuestra vida, querido Sancho; los obstáculos más grandes, nuestras propias indecisiones; nuestro enemigo más fuerte, el miedo al poderoso y a nosotros mismos; la cosa más fácil, equivocarnos; la más destructiva, la mentira y el egoísmo; la peor derrota, el desaliento; los defectos más peligrosos, la soberbia y el rencor; las sensaciones más gratas, la buena conciencia, el esfuerzo para ser mejores sin ser perfectos, y sobretodo, la disposición para hacer el bien y combatir la injusticia dondequiera que esté.

MIGUEL DE CERVANTES
Don Quijote de la Mancha.
La Colmena no se hace responsable ni se solidariza con las opiniones o conceptos emitidos por los autores de los artículos.

4 de enero de 2019

Russian researchers explore the prospects for creating photonic integrated circuits

by Staff Writers Nizhny Novgorod, Russia (SPX) Jan 01, 2019

Fig. 1. (a) Illustration of a surface plasmon propagating along a graphene sheet at ?<0t b="" carrier="" density.="" dependence="" graphene="" of="" span="" the="" time="">
The transition from electronic integrated circuits to faster, more energy-efficient and interference-free optical circuits is one of the most important goals in the development of photon technologies.
Photonic integrated circuits (PICs) are already used today for transmitting and processing signals in optical networks and communication systems, including, for example, I/O multiplexers of optical signals and microchips with an integrated semiconductor laser, a modulator and a light amplifier. However, today PICs are mostly used in combination with electronic circuits, while purely photonic devices are not yet competitive.
One of the challenges in creating PICs is the complexity of manufacturing various devices (waveguide couplers, power dividers, amplifiers, modulators, lasers and detectors on a single microchip), since they require different materials. The main materials used in existing PICs are semiconductors (indium phosphate, gallium arsenide, silicon), electro-optical crystals (lithium niobate), as well as various types of glass.
In order to increase the speed of PICs in controlling light flux, researchers are searching for new materials with high optical nonlinearity. Among promising materials, one can name, in particular, microwaveguides based on the newly discovered material, graphene (a layer of carbon atoms one atom thick), in which charge carrier concentrations can be effectively controlled using optical pumping or applied bias voltage.
According to Mikhail Bakunov, Head of the UNN General Physics Department, recent theoretical and experimental work shows the possibility of superfast (involving times of several light field periods) carrier concentration changes in graphene, which opens up possibilities for manipulating the amplitude and frequency of light waves (plasmons) directed by the graphene surface.
"The development of physical models for the description of electromagnetic processes in nonstationary graphene is of great practical importance. It causes an increased interest on the part of researchers.
"One of the results of research in 2018 was the prediction in a number of papers of the possibility to enhance (increase the energy) of plasmons by changing the carrier concentration in graphene, which is certainly attractive for creating new devices," notes Mikhail Bakunov.
Alexei Maslov, Associate Professor at the UNN General Physics Department, continues: "Our study is aimed at developing the physical principles of ultrafast photon control in integrated microchips, in other words, at improving the performance of microcircuits and microchips used in microelectronics and nanoelectronics."
Researchers of the UNN General Physics Department have developed a theory for the conversion of light waves propagating over the surface of graphene (a layer of carbon atoms one atom thick), when the concentration of electrons in graphene changes over time.
In contrast to previous research, the interaction of electrons with the light field is precisely taken into account. One of the results of the study was to rule out the previously predicted possibility of amplifying light waves by changing the concentration of electrons. Thus, the work of UNN scientists gives a new look at the dynamics of waves in non-stationary microwaveguides, thereby contributing to the development of PICs.
Research paper

Related Links Lobachevsky University Computer Chip Architecture, Technology and ManufactureNano Technology News From SpaceMart.com

Alerta Venezuela

No dejen de ver este conmovedor video

LatinoAmérica Calle 13

The American Dream

Facebook, Israel y la CIA











La Revolucion de la Clase Media


Descontento en el corazon del capitalismo: el Reino Unido

Descontento en el corazon del capitalismo: el Reino Unido

La Ola se extiende por todo el mundo arabe : Bahrein

La Caida de un Mercenario

La Revolucion no sera transmitida (I)

(II) La revolucion so sera transmitida

(III) La Revolucion no sera transmitida

(IV) La Revolucion no sera transmitida

(V) La Revolucion no sera transmitida

(VI) La Revolucion no sera transmitida

(VII) La revolucion no sera transmitida

(VIII) La Revolucion no sera transmitida

Narcotrafico SA

La otra cara del capitalismo...

Manuel Rosales mantenia a la oposicion con el presupuesto de la Gobernacion del Zulia...

El petroleo como arma segun Soros

Lastima que se agacho...

El terrorismo del imperio

Promocional DMG

Uribe y DMG