Global Research
Click to read this article in your browser.
Heavy Oil and Tar Sands
While
much is heard of “fracking” these days; steam-injection may in the long
run prove to be the petroleum industry game-changer. Steam aids
in harvesting heavy oils from sprawling oil-rich sand and clay
formations where the oil is too viscous to be worked by conventional
pumps.
Initially, all heavy oil (Alberta) was
extracted via open-pit mines wherein giant shovels heaved mounds of
oil-saturated sand onto giant dump-trucks for transit to separating vats
filled with hot water. This method has largely given way to
steam-injection. In Alberta’s oilsands, where much of this technology originated, heavy oil is now 80% extracted via steam; 20% via mining.
The
simplest form of steam injection uses a single well. A hole is drilled
down to a heavy oil deposit; then steam is pumped down the hole,
sometimes for months. Eventually a blob of oil concentrates near the
well’s bottom of sufficient viscosity to enable pumping to the surface.
Circa
1978 SAGD (Steam Assisted Gravity Drainage) emerged. With SAGD two
lengthy perforated pipes are drilled into place horizontally through the
deposit; one pipe a few metres above the other. Both pipes emit steam
until a teardrop shaped oil bubble envelopes the lower pipe. Then the
top pipe continues to emit steam while the lower pipe goes into reverse;
drawing oil to the surface. In 2017 Alberta’s oilsands yielded 2.7 million barrels a day; mostly via SAGD.
Three additional innovations are coming to the fore.
Solvent-Assisted SAGD adds designer chemicals (solvents) to the steam-injection process to accelerate the loosening up the oil.
DHSG
(Downhole Steam Generation) lowers small but mighty steam generation
tools (furnaces) deep into the well. DHSG allows for greater heat
conservation and improved fuel economy.
Miniature
nuclear reactors are ready for commercial application. Toshiba has
developed a prototype reactor specifically for heavy oil extraction.
This 5 MW electricity generator simultaneously serves as the furnace for
a 900 Celsius steam injection boiler. The reactor promises to replace
the elaborate and expensive natural gas infrastructure presently
required by oil-field steam injection facilities. Toshiba’s prototype
needs refueling every 30 years.
Venezuela’s Orinoco Oil Belt
The
world’s fourth largest river, the Orinoco, rises in the Parima
Mountains along the Venezuelan-Brazilian border. The Orinoco engraves a
2,000 kilometre north-easterly arc through Columbia and Venezuela before
discharging into the Atlantic Ocean off Venezuela’s coast. The Orinoco
Heavy Oil Belt stretches 600 kilometres along the north bank of the
Orinoco River’s easterly dash to the sea. The Belt is 70 kilometers
wide.
United
States Geological Service’s (USGC) Estimate of Recoverable Oil Reserves
of the Orinoco Oil Belt (2009) is the go-to source regarding the
Orinoco reservoir’s size. After describing how this oil-saturated bed of
sandstone ended up 150 to 1500 metres below the surface of the East
Orinoco Basin; the authors estimate “oil-in-place” to be up to 1.4 trillion barrels.
The Belt’s “technically recoverable” oil is estimated to be as much as 652 billion barrels.
Elsewhere, however, the report speculates that by fully exploiting
SAGD, and other recovery enhancement processes, 70% of the oil-in-place
might be extracted. Moreover, the report relies on studies published
between 2001 and 2008 hence does not contemplate: Solvent-Assisted SAGD;
Downhole Steam Generation; let alone the application of nuclear power.
Tackling the Orinoco Belt with these technologies will yield a trillion
barrels.
The
report does not discuss production costs. Canadian oilsands companies
continued to produce in 2018 even after transportation bottlenecks
tanked prices to $20 a barrel. These facilities, however, would not have
been built had investors known this might be the price of their wares. The business press guesstimates the current breakeven price for an Alberta oilsands project to be around $35 a barrel.
While the Orinoco Belt is not as large as Alberta’s oilsands it has three advantages:
a) its oil is not as heavy;
b) its climate is far hotter; and
c) it’s much closer to a coast.
The
Orinoco Belt sits at 9 degrees latitude and its entire span is a few
hundred kilometres from Atlantic shores. Orinoco Belt production costs
will be noticeably lower than Alberta’s oilsands.
Let’s place 1 trillion barrels of oil in context.
Global oil consumption is currently 35 billion barrels a year. Thus, the Orinoco Belt alone could satisfy 100% of global demand for almost 30 years!
As for the Orinoco field’s dollar value. World oil prices are currently hovering near $60 …do the math.
*
Note
to readers: please click the share buttons above. Forward this article
to your email lists. Crosspost on your blog site, internet forums. etc.
Featured image is from Radio Rebelde