Cervantes

Hoy es el día más hermoso de nuestra vida, querido Sancho; los obstáculos más grandes, nuestras propias indecisiones; nuestro enemigo más fuerte, el miedo al poderoso y a nosotros mismos; la cosa más fácil, equivocarnos; la más destructiva, la mentira y el egoísmo; la peor derrota, el desaliento; los defectos más peligrosos, la soberbia y el rencor; las sensaciones más gratas, la buena conciencia, el esfuerzo para ser mejores sin ser perfectos, y sobretodo, la disposición para hacer el bien y combatir la injusticia dondequiera que esté.

MIGUEL DE CERVANTES
Don Quijote de la Mancha.

10 de octubre de 2019

Pressure may be key to thermoelectric generators


by Staff Writers Washington DC (SPX) Oct 08, 2019

This is an artist's conception of how applying pressure in the diamond anvil cell changes the electronic structure of lead selenide.
Pressure improves the ability of materials to turn heat into electricity and could potentially be used to create clean generators, according to new work from a team that includes Carnegie's Alexander Goncharov and Viktor Struzhkin published in Nature Materials.
Alternative energy sources are key to combating climate change caused by carbon emissions. Compounds with thermoelectric capabilities can convert thermal energy's innate, physical need to spread from a hot place into a cold place into energy - harvesting electricity from the temperature differential. In theory, generators built from these materials could be used to recover electricity from "wasted" heat given off by other processes, making major contributions to the nation's energy budget.
However, engineers have been unable to improve the room-temperature performance of any thermoelectric materials in 60 years, meaning that devices built to take advantage of this capability are only practical for some very specific applications, including remote gas pipelines and spacecraft.
"Our measurement of the efficiency of room-temperature thermoelectricity has not budged in more than half a century," said Goncharov. "Thermoelectric compounds have demonstrated improved performance at high temperatures, but we really need them to work well at room temperature to make the most of their potential for green energy."
This is precisely the kind of problem that material science is suited to address.
The research team - led by Liu-Cheng Chen of the Center for High Pressure Science and Technology Advanced Research - found that they could improve the thermoelectric capability of lead selenide by applying pressure and mixing in charged particles of chromium.
By squeezing the material in the diamond anvil cell - which acted as a sort of "chemical pressure" - and adding the chromium, the lead selenide was encouraged to undertake a structural rearrangement at the atomic level, enabling the most-efficient demonstration of room-temperature thermoelectric generation ever recorded.
Under 30,000 times normal atmospheric pressure, the chromium-doped lead selenide was able to produce electricity with the same efficiency that the top-performing thermoelectric materials do at 27 degrees Celsius (80 degrees Fahrenheit).
"Our work presents a new way to use compression techniques to improve the thermoelectric performance, bringing us closer to practical applications that could help fight climate change," concluded Xiao-Jia Chen of the Center for High Pressure Science and Technology Advanced Research (formerly of Carnegie).
SUTD physicists unlock the mystery of thermionic emission in graphene Singapore (SPX) Oct 08 - When a metal is heated to a sufficiently high temperature, electrons can be ejected out from the surface in a process known as the thermionic emission, a process that is similar to the evaporation of water molecules from the surface of boiling water.
The thermionic emission of electron plays an important role in both fundamental physics and digital electronic technology. Historically, the discovery of thermionic emission enables physicists to produce beams of free-flowing electrons in a vacuum. Such electron beams had been used in the hallmark experiment performed by Clinton Davisson and Lester Germer in the 1920s' to illustrate the wave-particle duality of electrons - a bizarre consequence of quantum physics, which marked the dawn of the modern quantum era.
Technologically, thermionic emission forms the core of the vacuum tube technology - the precursor of modern-day transistor technology - that enabled the development of the first-generation digital computer. Today, thermionic emission remains one of the most important electricity conduction mechanisms that governs the operation of billions of transistors embedded in our modern-day computers and smartphones.
Although the thermionic emission in traditional materials, such as copper and silicon, has been well-explained by a theoretical model put forward by British physicist O. W. Richardson in 1901, exactly how thermionic emission takes place in graphene, a one-atom thin nanomaterials with highly unusual physical properties, remains a poorly understood problem.
Understanding the thermionic emission from graphene is particularly important as graphene may hold the key to revolutionizing a vast array of technologies, including computing electronics, biological sensor, quantum computer, energy harvester, and even mosquito repellent. Graphene and its broader family of atomically-thin nanomaterials - also known as '2D materials' - have been highlighted as the top 10 emerging technologies by the World Economic Forum in 2016.
Reporting in Physical Review Applied, researchers from the Singapore University of Technology and Design (SUTD) have discovered a general theory that describes the thermionic emission from graphene. By carefully studying the electronic properties of graphene, they have constructed a generalized theoretical framework that can be used to accurately capture the thermionic emission physics in graphene and is suitable for the modeling of a wide range of graphene-based devices.
"We found that the conduction of electricity and heat energy arising from thermionic emission can deviate by more than 50% when erroneously calculated using the standard Dirac cone approximation," said Yueyi Chen, an SUTD undergraduate student who participated in this research.
The electronic property of graphene is often described by the 'Dirac cone approximation', a simple theoretical framework based on the unusual behavior of electrons in graphene that mimics fast-moving particles living in the ultrarelativistic regime.
This Dirac cone approximation has formed the standard paradigm for the understanding of graphene physical properties and is a cornerstone model for the design of many graphene-based electronic, optoelectronic and photonic devices.
However, when electrons in graphene are thermally or optically excited into higher energy states, they stop obeying the Dirac cone approximation. SUTD researchers realized that using the Dirac cone approximation to model the thermionic emission of highly-excited electrons from graphene can lead to spurious results, producing highly unreliable prediction that deviates significantly from the actual performance of the graphene electronic and energy devices.
The new approach developed by SUTD researchers significantly improves the reliability of their model by using a more sophisticated theory that fully captures the electronic properties of graphene in the high-energy regime, thus circumventing the low-energy limitation as required by the Dirac cone approximation.
Without relying on the Dirac cone approximation, this new thermionic emission model now allows a wide array of graphene-based devices operating at different temperatures and energy regimes to be universally described under a single framework (refer to image).
"The generalized model developed in this work will be particularly valuable for the design of cutting-edge waste-heat-to-electricity converters and low-energy electronics using graphene, which may offer new hopes in reducing the energy footprint of the next-generation computing and communication devices," said Professor Ricky L. K. Ang, Head of Science and Math Cluster at SUTD.
Research paper

Related Links Carnegie Institution for Science Powering The World in the 21st Century at Energy-Daily.com

Alerta Venezuela

No dejen de ver este conmovedor video

LatinoAmérica Calle 13

The American Dream

Facebook, Israel y la CIA











La Revolucion de la Clase Media


Descontento en el corazon del capitalismo: el Reino Unido

Descontento en el corazon del capitalismo: el Reino Unido

La Ola se extiende por todo el mundo arabe : Bahrein

La Caida de un Mercenario

La Revolucion no sera transmitida (I)

(II) La revolucion so sera transmitida

(III) La Revolucion no sera transmitida

(IV) La Revolucion no sera transmitida

(V) La Revolucion no sera transmitida

(VI) La Revolucion no sera transmitida

(VII) La revolucion no sera transmitida

(VIII) La Revolucion no sera transmitida

Narcotrafico SA

La otra cara del capitalismo...

Manuel Rosales mantenia a la oposicion con el presupuesto de la Gobernacion del Zulia...

El petroleo como arma segun Soros

Lastima que se agacho...

El terrorismo del imperio

Promocional DMG

Uribe y DMG