Cervantes

Hoy es el día más hermoso de nuestra vida, querido Sancho; los obstáculos más grandes, nuestras propias indecisiones; nuestro enemigo más fuerte, el miedo al poderoso y a nosotros mismos; la cosa más fácil, equivocarnos; la más destructiva, la mentira y el egoísmo; la peor derrota, el desaliento; los defectos más peligrosos, la soberbia y el rencor; las sensaciones más gratas, la buena conciencia, el esfuerzo para ser mejores sin ser perfectos, y sobretodo, la disposición para hacer el bien y combatir la injusticia dondequiera que esté.

MIGUEL DE CERVANTES
Don Quijote de la Mancha.
La Colmena no se hace responsable ni se solidariza con las opiniones o conceptos emitidos por los autores de los artículos.

23 de abril de 2021

The science of spin as asteroseismologists confirm older stars rotate faster than expected

 by Staff Writers

Birmingham UK (SPX) Apr 23, 2021

"Sound waves trapped inside stars cause them to oscillate at particular frequencies. These vibrations are visible on the surface and can be measured by astronomers using space telescopes. When a star is rotating these oscillation frequencies change slightly, making it possible to measure the star's rotation by looking at how its surface changes over time. The study of these vibrations (called asteroseismology) can also be used to measure properties such as a star's mass and age. This lets us understand in more detail how the rotation and activity of stars evolve over time, improving our understanding of stars, exoplanetary systems, and our own solar system"

Stars spin faster than expected as they age according to a new study led by scientists at the University of Birmingham which uses asteroseismology to shed new light on this emerging theory.

All-stars, like the Sun, are born spinning. As they grow older, their spin slows down due to magnetic winds in a process called 'magnetic braking'. Research published in 2016 by scientists at Carnegie Observatories delivered the first hints that star at a similar stage of life as the Sun was spinning faster than magnetic braking theories predicted.

The results from this study were based on a method in which scientists pinpoint dark spots on the surface of stars and track them as they move with the stars' spin. While the method has proven robust for measuring spin in younger stars, however, older stars have fewer starspots, which has made the effects of this "weakened" magnetic braking on these stars hard to confirm.

In a new study, published in Nature Astronomy, researchers at the University of Birmingham used a different approach to confirm that older stars do, in fact, appear to rotate faster than expected. The team used asteroseismology to calculate how the star is rotating. This relatively new field of study enables scientists to measure the oscillations caused by sound waves trapped inside the star. By measuring the different characteristics of these waves, they can reveal different characteristics of stars, such as their size or age.

In this study, the team measured the modes, or the frequencies, of the sound waves produced by the star's oscillation. As the star spins, these modes split into different frequencies.

This can be imagined, the author's say, as the sound of two ambulances stood still on a roundabout compared to when they are driving in circles. By measuring these frequencies, it is possible to calculate the rate of spin in a way that is possible for both young and old stars.

Lead author on the paper, Dr. Oliver Hall, said: "Although we've suspected for some time that older stars rotate faster than magnetic braking theories predict, these new asteroseismic data are the most convincing yet to demonstrate that this 'weakened magnetic braking' is actually the case. Models based on young stars suggest that the change in a star's spin is consistent throughout their lifetime, which is different to what we see in these new data."

One aspect the researchers believe could be key to the change in momentum loss, changes to the star's magnetic field. Understanding how the magnetic field interacts with rotation will be an important area of future study and is being worked on by authors on the paper.

The results could also shed light on our own star's activity over the next several billion years, explains co-author Dr. Guy Davies: "These new findings demonstrate that we still have a lot to learn about the future of our own Sun as well as other stars.

This work helps place in perspective whether or not we can expect reduced solar activity and harmful space weather in the future. To answer these questions we need better models of solar rotation, and this work takes an important step towards improving the models and supplying the data needed to test them."

Alerta Venezuela

No dejen de ver este conmovedor video

LatinoAmérica Calle 13

The American Dream

Facebook, Israel y la CIA











La Revolucion de la Clase Media


Descontento en el corazon del capitalismo: el Reino Unido

Descontento en el corazon del capitalismo: el Reino Unido

La Ola se extiende por todo el mundo arabe : Bahrein

La Caida de un Mercenario

La Revolucion no sera transmitida (I)

(II) La revolucion so sera transmitida

(III) La Revolucion no sera transmitida

(IV) La Revolucion no sera transmitida

(V) La Revolucion no sera transmitida

(VI) La Revolucion no sera transmitida

(VII) La revolucion no sera transmitida

(VIII) La Revolucion no sera transmitida

Narcotrafico SA

La otra cara del capitalismo...

Manuel Rosales mantenia a la oposicion con el presupuesto de la Gobernacion del Zulia...

El petroleo como arma segun Soros

Lastima que se agacho...

El terrorismo del imperio

Promocional DMG

Uribe y DMG