Cervantes

Hoy es el día más hermoso de nuestra vida, querido Sancho; los obstáculos más grandes, nuestras propias indecisiones; nuestro enemigo más fuerte, el miedo al poderoso y a nosotros mismos; la cosa más fácil, equivocarnos; la más destructiva, la mentira y el egoísmo; la peor derrota, el desaliento; los defectos más peligrosos, la soberbia y el rencor; las sensaciones más gratas, la buena conciencia, el esfuerzo para ser mejores sin ser perfectos, y sobretodo, la disposición para hacer el bien y combatir la injusticia dondequiera que esté.

MIGUEL DE CERVANTES
Don Quijote de la Mancha.
La Colmena no se hace responsable ni se solidariza con las opiniones o conceptos emitidos por los autores de los artículos.

4 de diciembre de 2013

Manipulating electron spin mechanically


10 hours ago by Anne Ju
'Shaken, not stirred': Oscillator drives electron spin
A schematic drawing of the device, which includes a transducer that produces gigahertz-frequency standing waves within diamond. Credit: Evan MacQuarrie
(Phys.org) —Contrary to many textbook illustrations, electrons aren't just balls floating around an atom. In quantum theory, they're more like little tops, exhibiting "spin," and each creating its own tiny magnetic field.
Learning how best to manipulate these spins could open up technological advances in everything from quantum computers to encryption protocols to highly sensitive detectors. Usually, scientists exert control over electron spins by applying magnetic fields. It is the same concept that gives us : A strong magnetic field influences the spins (in MRI's case, of the nuclei) inherent in billions of hydrogen atoms in the body, enough of which can be converted into medical images.
A collaboration of physicists and engineers has found a new way to control electron spins not with a magnetic field but with a mechanical oscillator – a demonstration of electron spin resonance that's "shaken, not stirred," said lead researcher Gregory Fuchs, assistant professor of applied and engineering physics (AEP).
Fuchs and the research team showed that an oscillator – a transducer moving at extremely high frequency – can drive the transitions of electron spins (a phenomenon called spin resonance), within defects commonly found in the of a diamond. Their results were published online Nov. 27 in the journal Physical Review Letters.
In conventional magnetic resonance, a rotating magnetic field twirls around at the same rate as the electrons "spin" – the magnetic field is "stirring" the spins. Instead, the Cornell researchers used an oscillator to "shake" the diamond lattice to directly flip the spins.
Their experiment involved looking at electrons spins within a naturally occurring defect in the crystal lattice of a diamond, called a nitrogen-vacancy center. Spins found within these defects are a promising platform for studying quantum spin control.
'Shaken, not stirred': Oscillator drives electron spin
The researchers call their electron spin resonance demonstration “shaken, not stirred." While ordinarily spin resonance is induced by “stirring” a spin with a rotating magnetic field, in this work it results from “shaking” a diamond crystal …more
To complete the work, Fuchs collaborated with Sunil Bhave, associate professor of electrical and computer engineering, whose expertise is in high-frequency microelectromechanical systems (MEMS). They used a transducer, which acts like a small speaker, to vibrate the lattice by applying AC voltage. This created a standing wave inside the diamond, and the stress from these waves on the defect created the electron spin resonance. They measured the values of the spin using a microscope that senses the fluorescence output of the spins.
From the gigahertz-frequency oscillations, they demonstrated direct coupling of spin states within the diamond defects without the use of a .
A device built around such a system could be useful in MEMS or for a precision sensor, Fuchs said. Their research is a breakthrough in the field of spin-based quantum technologies, in which scientists are trying to understand and control physical phenomena at the most fundamental scales.
"We are just taking baby steps to try to understand these interactions, quantify them and see what can be done," Fuchs said. "What we've done is the very first thing –showing that you can do spin resonance using mechanical oscillations."
The paper is titled "Mechanical Spin Control of Nitrogen-Vacancy Centers in Diamond." Its first author is Evan MacQuarrie, a graduate student in physics, and included work by Tanay Gosavi, a graduate student in the field of electrical and computer engineering, and Nicholas Jungwirth, a graduate student in physics.
Explore further: Diamond 'flaws' pave way for nanoscale MRI
More information: "Mechanical Spin Control of Nitrogen-Vacancy Centers in Diamond." E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs. Phys. Rev. Lett. 111, 227602 (2013) DOI: 10.1103/PhysRevLett.111.227602
Journal reference: Physical Review Letters search and more info website
Provided by Cornell University search and more info website

Alerta Venezuela

No dejen de ver este conmovedor video

LatinoAmérica Calle 13

The American Dream

Facebook, Israel y la CIA











La Revolucion de la Clase Media


Descontento en el corazon del capitalismo: el Reino Unido

Descontento en el corazon del capitalismo: el Reino Unido

La Ola se extiende por todo el mundo arabe : Bahrein

La Caida de un Mercenario

La Revolucion no sera transmitida (I)

(II) La revolucion so sera transmitida

(III) La Revolucion no sera transmitida

(IV) La Revolucion no sera transmitida

(V) La Revolucion no sera transmitida

(VI) La Revolucion no sera transmitida

(VII) La revolucion no sera transmitida

(VIII) La Revolucion no sera transmitida

Narcotrafico SA

La otra cara del capitalismo...

Manuel Rosales mantenia a la oposicion con el presupuesto de la Gobernacion del Zulia...

El petroleo como arma segun Soros

Lastima que se agacho...

El terrorismo del imperio

Promocional DMG

Uribe y DMG